Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 911-922, 2021.
Article in Chinese | WPRIM | ID: wpr-878603

ABSTRACT

Transcription factor-based biosensors (TFBs) play an essential role in metabolic engineering and synthetic biology. TFBs sense the metabolite concentration signals and convert them into specific signal output. They hold high sensitivity, strong specificity, brief analysis speed, and are widely used in response to target metabolites. Here we reviewe the principles of TFBs, the application examples, and challenges faced in recent years in microbial cells, including detecting target metabolite concentrations, high-throughput screening, adaptive laboratory evolutionary selection, and dynamic control. Simultaneously, to overcome the challenges in the application, we also focus on reviewing the performance tuning strategies of TFBs, mainly including traditional and computer-aided tuning strategies. We also discuss the opportunities and challenges that TFBs may face in practical applications, and propose the future research trend.


Subject(s)
Biosensing Techniques , Gene Expression Regulation , Metabolic Engineering , Synthetic Biology , Transcription Factors/metabolism
2.
Journal of Pharmaceutical Analysis ; (6): 13-16,20, 2006.
Article in Chinese | WPRIM | ID: wpr-625024

ABSTRACT

Objective A novel high-speed three-way solenoid valve is developed, which is used for the common-rail injection system equipped on DME powered engine. In order to improve the dynamic response performance of the three-way solenoid. Methods Experimental studies have been conducted to investigate the effects of spool stroke, drive voltage, negative demagnetizing pulse and two drive schemes on the dynamic response performance of the three-way solenoid valve. Results The results show that the dynamic response performance of the three-way solenoid valve can be remarkably improved by shortening the spool stroke and increasing the drive voltage. Simultaneously, the difference between the response time of closing valve and that of opening valve decreases. At each different drive voltage, there exists an optimal negative demagnetizing pulse corresponding to the same positive exciting pulse. At this optimal pulse,the dynamic response performance of the three-way solenoid valve is the best. In addition, the high drive voltage can lead to the smaller optimal negative demagnetizing pulse. It is also indicated from the experiments that the dynamic response performance of the three-way solenoid valve is better when the NO. 1 drive scheme is adopted. The lower drive voltage results in the larger difference between the dynamic response performances for the two drive schemes.Conclusion The dynamic response performance of a novel three-way solenoid valve is good.

SELECTION OF CITATIONS
SEARCH DETAIL